
Castle Climber REDUX

Matt Peterson – DES450 FALL 2023 – Technical Documentation

In-Engine Improvisations & Innovations:

• URP shader manipulation

o Triplanar mapping

o 2D and 3D cross integration through shaders and lighting

• Animation manipulation

o Animation of static mesh through UV manipulation

o Accessing properties of URP shader materials for keyframing

• 2D backend behind 3D frontend

o Execution of 2D physics/controller/tilemapping behind 3D

o Working in a 2D workflow masked by a 3D presentation

o Blending the difference between 2D and 3D visually

• Modular player controller design

o Utilizes Finite State Machine logic to adapt expandability and modularity

o Easily built upon; features can easily be added or removed

o Allows locomotion logic to be split between different branches of

functionality, across different scripts and states.

Demonstrative Examples:

Triplanar shader projecting the brick

texture across UVs, using custom

shader + materials per texture

projected. Normal of object

determines which texture is projected

across which plane.

Custom lighting material

implementation for 2D sprites and

tilemaps; shown by the shadows and

lighting interactions for the column

(tilemapped) and sign (sprite).

Faux voxel effect provided by

per-pixel extrusion given a

texture projected onto a 3D

plane.

Additional layering of triplanar

textures onto a material to allow

effects like this; perfectly tileable

cracks on a triplanar surface

without the need of an

independent texture.

Further example of how the

extrusion effect is used to

create a faux diorama effect

Exposure of URP shader properties to the animator for keyframing.

Exposing UV coordinates of currently displayed texture on a plane to move the cropped view of

the texture to a specific coordinate/sprite on a grid.

Example of how specific player

states are cut up into FSM base

states, each able to adopt its own

unique properties and parameters

for specific state functions outside of

what’s provided by the state

machine. This FSM follows a

key/state dictionary in the machine,

allowing states to easily be called

and switched between using

serializable instantiation.

Implementation Notes:

Everything is created using Unity

and the base URP. No additional

resources outside of the base

Unity editor is required.

